Third Chapter Lesson-4: Conversion among Binary, Octal \& Hexadecimal numbers.

At the end of this lesson-

1. You will be able to convert Octal \& Hexadecimal to Binary Number system.
2. You will be able to convert Binary to Octal \& Hexadecimal Number system.
3. You will be able to convert Octal to Hexadecimal Number system.
4. You will be able to convert Hexadecimal to Octal Number system.

Step-01: Convert the number from any base to base 10.
Step-02: Convert the number from base 10 to any base.
That is, in case of non-decimal numbers, any conversion can be done in two steps.

Except above rules there are following rules:

2^{n} (where, $\mathrm{n}=0,1,2,3, \ldots$.) formula can be used to convert directly from Octal \& Hexadecimal into Binary and from Binary into Octal \& Hexadecimal.

- In case of Octal, 421 (2^{n}; where $\mathrm{n}=0,1,2$)
- In case of Hexadecimal, $\mathbf{8 4 2 1}$ (2^{n}; where $\mathrm{n}=0,1,2,3$)

Above rules have been applied in the following conversions-

Conversion of octal number into binary number:

Same rules are followed for integer and fractional part-
Step-1: Convert each octal digit into 3-bit binary number [follow 421 rules]
Step-2: Combine the binary groups of all digits.

Example: Convert (375.24)s into binary number system.

So, $(375.24)_{8}=(011111101.010110)_{2}$

- Convert (127)s into binary number system.
- Convert (.7125)s into binary number system.
-

Conversion of hexadecimal number into binary number:

Same rules are followed for integer and fractional part-
Step-1: Convert each hexadecimal digit into 4-bit binary number [follow 8421 rules]

Step-2: Combine the binary groups of all digits.

So, $\mathbf{(3 5 D} .4 F)_{16}=(\mathbf{0 0 1 1 0 1 0 1 1 1 0 1 . 0 1 0 0 1 1 1 1})_{2}$

- Convert (D218) ${ }_{16}$ into binary number system.
- Convert (.1C39) ${ }_{16}$ into binary number system.

Conversion of binary number into octal number:

For integer and fractional number-

Step-1: In case of integer number divide the binary numbers into groups of 3-bits form right to left and In case of fractional number divide the binary numbers into groups of 3-bits form left to right.
[In case of integer number, If lack of bits to make 3-bits group, add the required number of zeros on the left and in case of fractions, If lack of bits to make 3-bits group, add the required number of zeros on the right]

Step-2: Write octal value of each group of 3-bits
Step-3: Combine the octal value

Example: Convert (10101011.1011011)2 into octal number system.
$\frac{010}{2} \quad \frac{101}{5} \quad \underset{3}{011} \cdot \underset{5}{101} \underset{1}{001} \underset{4}{100}$

So, $(10101011.1011011)_{2}=(253.514)_{8}$

- Convert ($\left.\mathbf{1 1 0 1 0 0 1}_{2}\right)_{2}$ into octal number system.
- Convert (.1010011)2 into octal number system.

Conversion of binary number into hexadecimal number:

For integer and fractional number-

Step-1: In case of integer number divide the binary numbers into groups of 4-bits form right to left and In case of fractional number divide the binary numbers into groups of 4-bits form left to right.
[In case of integer number, If lack of bits to make 4-bits group, add the required number of zeros on the left and in case of fractions, If lack of bits to make 4-bits group, add the required number of zeros on the right]

Step-2: Write hexadecimal value of each group of 3-bits
Step-3: Combine the hexadecimal value

$\frac{0001}{1} \underset{\mathrm{C}}{1100} \underset{\mathrm{~B}}{1011} \cdot \underset{\mathrm{~A}}{1010} \xrightarrow[6]{0110}$

So, $(0111001011.1010011)_{2}=(1 \mathrm{CB} . \mathrm{A} 6)_{16}$

- Convert ($\mathbf{(1 1 0 1 1 0 1) _ { 2 }}$ into hexadecimal number system.
- Convert ($\mathbf{(1 0 1 0 0 1 1) _ { 2 }}$ into hexadecimal number system.

Conversion of Octal into Hexadecimal Number:

The following two ways to convert octal to hexadecimal number-
One: First octal to decimal then decimal to hexadecimal
Two: First octal to binary then binary to hexadecimal

Example: Convert (375.246)s into Hexadecimal number.

- Convert (5273)s into hexadecimal number.
- Convert (.5137)s into hexadecimal number.

Conversion of Hexadecimal into Octal Number:

The following two ways to convert hexadecimal to octal number-
One: First hexadecimal to decimal then decimal to octal
Two: First hexadecimal to binary then binary to octal

Example: Convert (08B.FCD) ${ }_{16}$ into Octal number.
First Conversion of Hexadecimal into Binary

$(08 B . F C D)_{16}=(000010001011.111111001101)_{2}$

Again Conversion of Binary into Octal

$\frac{000}{0} \frac{010}{2} \frac{001}{1} \frac{011}{3} \cdot \frac{111}{7} \frac{111}{7} \frac{001}{1} \frac{101}{5}$
$(000010001011.111111001101)_{2}=(213.7715)_{8}$
So (08B.FCD $)_{16}=(213.7715)_{8}$

- Convert (5F293) ${ }_{16}$ into octal number.
- Convert (.A127) ${ }_{16}$ into octal number.

Lesson Evaluation-

Knowledge Based Questions:

Comprehension Based Questions:

Creative Questions:

According to the stem answer the following questions:

The professor of ICT was teaching the number system in the classroom. When asked about Imran's half-yearly and annual test scores for his ICT subject, he said he got (37) $)_{8}$ marks in half-yearly and (3 F$)_{16}$ marks in annual examination. When the other students asked Sir if they did not understand what it meant, Sir explained the details.
c) Convert Imran's marks obtained in half-yearly and annual exam into binary numbers.
d) Convert Imran's half-yearly marks into hexadecimal and annual marks into octal.

Multiple Choice Questions:

1. Which one is equivalent binary to (127) $)_{8}$?
a) 1010101
b) 1010111
c) 1110101
d) 1011101
2. Which one is equivalent binary to 4 C ?
a) 11001100
b) 01001100
c) 01001010
d) 01001101
3. Which one is equivalent hexadecimal to $(1110.0011)_{2}$?
a) E. 3
b) E. 8
c) E.C
d) C.E
4. Which one is equivalent hexadecimal to $(11011.110111)_{2}$?
a) 1 B .37
b) 1B.DC
c) D8.DC
d) D8.37
5. Equivalent value of $(1010)_{2}-$
i. $(10)_{10}$ ii. $(12)_{8}$ iii. (14) $)_{16}$

Which one is correct?
a) i \& ii
b) i \& iii
c) ii \& iii
d) i,ii \& iii

Read the stem and answer the question No-6 and 7:

Mr. Atik said to Kamal, " How old are you?" Kamal replied (101101)2
6. Which one is equivalent octal value to Kamal's age?
a) $(25)_{8}$
b) $(35)_{8}$
c) $(55)_{8}$
d) $(65)_{8}$
7. How old will Kamal be in binary after ten years?
a) $(101011)_{2}$
b) $(101110)_{2}$
c) $(101111)_{2}$
d) $(110111)_{2}$
8. Equivalent value of $(110110)_{2}-$
i. (66) $)_{8}$ ii. (54 $)_{10}$ iii. (36) $)_{16}$

Which one is correct?
a) i \& ii
b) i \& iii
c) ii \& iii
d) i,ii \& iii

