HSC-2021

Subject: Higher Mathematics 1st paper Assignment-03

Assignment Title: Solution of Straight line related problems by coordinates Geometry

Question:

In the figure, OABC is a quadrilateral.
$\mathrm{A}(-\mathrm{k}, 2 \mathrm{k}), \mathrm{k}>0$ and $\mathrm{OA}=\sqrt{80}$ unit. The line OC is parallel to the straight line $y-3 x=5$ and the point C lies on the perpendicular bisector of the line AB .
a) Find the equation of the straight line AB.
b) Find the coordinates of the point C .
c) In the right angled triangle BCD find the value of $\tan \angle \mathrm{BCD}$.
d) Find the equation of the bisector of the included acute angle of the straight lines BD and BC.
e) Find the equation of the straight line parallel to the line AB and at a distance $\sqrt{5}$ unit from the point $(1,2)$.

Solution

a) Coordinates of A is $(-\mathrm{k}, 2 \mathrm{k})$

And $\mathrm{OA}=\sqrt{80}$
$\Rightarrow \sqrt{(0+\mathrm{k})^{2}+(0-2 \mathrm{k})^{2}}=\sqrt{80}$
$\Rightarrow \mathrm{k}^{2}+4 \mathrm{k}^{2}=80$
$\Rightarrow 5 \mathrm{k}^{2}=80 \Rightarrow \mathrm{k}^{2}=16 \quad \therefore \mathrm{k}=4$
\therefore Coordinates of A is $(-4,8)$
Slope of OA is $=\frac{8-0}{-4-0}=\frac{8}{-4}=-2$
\therefore Slope of AB is $=\frac{1}{2}[\because \mathrm{AB} \perp \mathrm{OA}]$
\therefore Equation of the line AB is: $\mathrm{y}-8=\frac{1}{2}(\mathrm{x}+4)$
$\Rightarrow 2 \mathrm{y}-16=\mathrm{x}+4$
$\therefore x-2 y+20=0$
b) Equation of the line $A B$ is: $x-2 y+20=0$

At the point B , we have $\mathrm{x}=0$
$\therefore 0-2 y+20=0 \Rightarrow 2 y=20 \quad \therefore \mathrm{y}=10$
\therefore Coordinates of B is $(0,10)$
Again, coordinates of A is $(-4,8)$
\therefore Coordinates of D is $\left(\frac{0-4}{2}, \frac{10+8}{2}\right)$ or $(-2,9)$
[$\because \mathrm{D}$ is middle point of AB]
Again, equation of the line parallel to the line OC is: $\mathrm{y}-3 \mathrm{x}-5=0$
\therefore Equation of the line OC is: $\mathrm{y}-3 \mathrm{x}=0$
[Since it passes through the origin]
Again equation of the line DC which is perpendicular to the line $A B$ is:
$2 \mathrm{x}+\mathrm{y}+\mathrm{k}=0$ which passes through $\mathrm{D}(-2,9)$
$\therefore 2 \times(-2)+9+\mathrm{k}=0 \Rightarrow \mathrm{k}=-5$
\therefore Equation of DC is: $2 \mathrm{x}+\mathrm{y}-5=0$
Solving (i) and (ii) we get, $\mathrm{x}=1$ and $\mathrm{y}=3$
\therefore The coordinates of the point C is $(1,3)$
c) Coordinates of C is $(1,3)$

Coordinates of D is $(-2,9)$
Coordinates of B is $(0,10)$
\therefore Slope of CD is, $\mathrm{m}_{1}=\frac{3-9}{1+2}=\frac{-6}{3}=-2$
Slope of BC is, $m_{2}=\frac{3-10}{1-0}=-7$
If the included angle is ϕ then,
$\tan \phi= \pm \frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}$
$\Rightarrow \tan \phi= \pm \frac{-2+7}{1+(-2)(-7)}$
$\Rightarrow \tan \phi= \pm \frac{5}{15} \Rightarrow \tan \phi= \pm \frac{1}{3}$
$\therefore \tan \phi=\frac{1}{3}[\because \phi=\angle \mathrm{BCD}$ (Acute angle) $]$
d) Equation of the line BD or AB is:
$x-2 y+20=0$
Again coordinates of B is $(0,10)$
Coordinates of C is $(1,3)$
\therefore Equation of BC is: $\frac{\mathrm{x}-0}{0-1}=\frac{\mathrm{y}-10}{10-3}$
$\Rightarrow \frac{x}{-1}=\frac{y-10}{7} \Rightarrow 7 x=-y+10$
$\therefore 7 \mathrm{x}+\mathrm{y}-10=0$
\therefore The equations of the bisector of the angle included between the straight lines BD and $B C$ is:
$\frac{x-2 y+20}{\sqrt{1^{2}+(-2)^{2}}}= \pm \frac{7 x+y-10}{\sqrt{7^{2}+1^{2}}}$
$\Rightarrow \frac{x-2 y+20}{\sqrt{5}}= \pm \frac{7 x+y-10}{\sqrt{5} \times \sqrt{10}}$
$\Rightarrow \mathrm{x}-2 \mathrm{y}+20= \pm \frac{7 \mathrm{x}+\mathrm{y}-10}{\sqrt{10}}$
Here, $a_{1} a_{2}+b_{1} b_{2}=1 \times 7+(-2) \times 1=5>0$
\therefore The equation of the bisector of the included acute angle is:
$x-2 y+20=-\frac{7 x+y-10}{\sqrt{10}}$
$\Rightarrow \sqrt{10} x-2 \sqrt{10} y+20 \sqrt{10}=-7 x-y+10$
$\therefore(\sqrt{10}+7) \mathrm{x}+(1-2 \sqrt{10}) \mathrm{y}+(20 \sqrt{10}-10)=0$
e) Equation of the line $A B$ is: $x-2 y+20=0$
\therefore The equation of the line parallel to AB is:
$x-2 y+k=0$
The perpendicular distance of the line $\mathrm{x}-2 \mathrm{y}+\mathrm{k}=0$ from the point $(1,2)$ is
$=\frac{|1-2 \times 2+\mathrm{k}|}{\sqrt{1^{2}+(-2)^{2}}}=\frac{|\mathrm{k}-3|}{\sqrt{5}}$ unit
By the condition, $\frac{|\mathrm{k}-3|}{\sqrt{5}}=\sqrt{5}$
$\Rightarrow|\mathrm{k}-3|=5 \Rightarrow \mathrm{k}-3= \pm 5$
$\Rightarrow \mathrm{k}=3 \pm 5 \quad \therefore \mathrm{k}=8,-2$
\therefore Equation of the required parallel line is:
$x-2 y+8=0$ or $x-2 y-2=0$

